DR ANTHONY MELVIN CRASTO,WorldDrugTracker, helping millions, A 90 % paralysed man in action for you, I am suffering from transverse mylitis and bound to a wheel chair,With death on the horizon, This will not stop me, Gods call only..........
DR ANTHONY MELVIN CRASTO Ph.D ( ICT, Mumbai) , INDIA 29Yrs Exp. in the feld of Organic Chemistry,Working for GLENMARK PHARMA at Navi Mumbai, INDIA. Serving chemists around the world. Helping them with websites on Chemistry.Million hits on google, world acclamation from industry, academia, drug authorities for websites, blogs and educational contributio
n

Saturday, 11 June 2016

Dr. Joe Barchi

Dr. Joe Barchi
Structural Glycoconjugate Chemistry and NMR
Dr. Barchi received his Ph.D. in Organic Chemistry from the University of Hawaii with Richard E. Moore and did 2 years of postdoctoral work at Duke University with Bert Fraser-Reid. He then joined the NCI as a staff fellow in 1988, was promoted to staff scientist and then to senior scientist in 2002. His main research interests are in synthetic medicinal chemistry as it relates to carbohydrate-based drug design, and the high-resolution structural analysis of sugars, glycopeptides and small molecule drug candidates by NMR spectroscopy.
Go to Joe's Page
 
 
 

Dr. Joe Barchi


Dr. Joe Barchi
Structural Glycoconjugate Chemistry and NMR
301-846-5905

Research Summary

Multivalent Presentation of Tumor-Associated Carbohydrate Antigens (TACA) and TACA-Peptide Conjugates as Modulators of Tumor Cell Adhesion and Novel Immunogens

Carbohydrates are presented on the surface of cells primarily in covalent linkages to proteins (glycoproteins, proteoglycans) or lipids (glycolipids, gangliosides. These diverse groups of oligosaccharide chains function to stabilize protein structures, facilitate protein transport or clearance, and mediate cell adhesion. Cell-surface glycans may reveal or mask peptide epitopes on proteins or be recognized as immunogenic structures themselves. During oncogenesis, the cell-surface glycans on tumor cells are transformed relative to the normal phenotype through modified expression of the enzymes involved in the cell's glycoprocessing machinery. These aberrations are a hallmark of highly tumorigenic and metastatic cell types. The cascade of events leading to tumor metastasis is marked by the alternate adhesion and release of the tumor cell with a variety of surrounding cell types. The binding between tumors and other cell types is often mediated by carbohydrate-protein (lectin) interactions involving the aberrant glycans expressed on tumor cells. Inhibition of these adhesion events could slow or prevent metastatic spread. In addition, some of these tumor cell glycans are TACA's that are recognized as non-self by the immune system and have thus been used as components in vaccine constructs that are in clinical trials. Since it is well known that monovalent sugar-protein binding is a very weak interaction, inhibitors of these events utilize 'multivalency' (multiple copies of the carbohydrate ligand) to enhance the strength of this effect. We are exploring ways to synthesize novel templates on which to place multiple copies of the Thomsen Freidenreich (Tf) antigen, a disaccharide O-linked to proteins found on the cell surface that is present in >90% of carcinomas but rarely found in normal tissue. We have developed a new synthesis of this antigen that is equipped with a conjugatable linker to attach to macromolecules or other surfaces. We attached Tf antigen to gold surfaces and showed that this construct attached strongly to a Tf-binding peptide. In addition, our group discovered a new synthesis of Tf-encapsulated Quantum Dots (QD). These are new semiconductor nanocrystals that have size-dependent optical properties that make them extremely useful as biological imaging agents. These novel sugar-coated particles are also being explored as potential immunogens to raise high titer antibodies to Tf antigen. The preparation of glycopeptides containing the Tf disaccharide that are displayed on gold or QD particles is now being investigated. It is hoped that the combination of the peptide and the covalently linked carbohydrate will generate a glycopeptide-specific immune response that will be mmore powerful than either single antigen alone.

Conformational Analysis of Drug Candidates by NMR Spectroscopy

The LMC synthesizes small molecule agents potential anticancer or antiviral therapeutics. Our section uses NMR spectroscopy to determine 3-dimensional connformations of many of these candidates as an aid to structure-based drug design. Currently, a major area of research has focused on the global conformational changes imparted to small DNA duplexes by inclusion of conformationally constrained base pairs. These nucleoside analogues were synthesized in the LMC (see Marquez group home page) and incorporated into a standard B-DNA sequence. The analogues were designed to force an A-DNA like motif in the center of the duplex. NMR data has allowed us to define any additional bending in the overall duplex that is caused by the base 'mutations'. The goal is to design oligonucleotides that are predisposed to different bend angles and may mimic the deformations caused when specific gene sequences bind to proteins (e.g., transcription factors)
PublicationsPatents
1 - 5 of 96 results
1)  Ambre Shailesh, Barchi Joseph.
Stine Keith, eds.
Carbohydrate Nanotechnology and its Applications for the Treatment of Cancer. In: Carbohydrate Nanotechnology.
Hoboken, NJ: John Wiley and Sons; 2015. p. 335-368. [Book Chapter]
2)  Huang X, Barchi JJ.
Preface.
Carbohydr. Res. 405: 1, 2015. [Journal]
3)  Biswas S, Medina SH, Barchi JJ.
Synthesis and cell-selective antitumor properties of amino acid conjugated tumor-associated carbohydrate antigen-coated gold nanoparticles.
Carbohydr. Res. 405: 93-101, 2015. [Journal]
4)  Glinskii OV, Li F, Wilson LS, Barnes S, Rittenhouse-Olson K, Barchi JJ, Pienta KJ, Glinsky VV.
Endothelial integrin a3ß1 stabilizes carbohydrate-mediated tumor/endothelial cell adhesion and induces macromolecular signaling complex formation at the endothelial cell membrane.
Oncotarget. 5: 1382-9, 2014. [Journal]
5)  Briñas RP, Maetani M, Barchi JJ.
A survey of place-exchange reaction for the preparation of water-soluble gold nanoparticles.
J Colloid Interface Sci. 392: 415-21, 2013. Full Text Article. [Journal]
 
 
 
 
 
 
///////// 

Dr. Joel Schneider

Dr. Joel Schneider
 
Peptide Design and Materials
Dr. Schneider received his Ph.D. in Organic Chemistry from Texas A&M University with Jeffery Kelly and then went on to the University of Pennsylvania School of Medicine, Department of Biochemistry and Biophysics where he was a George W. Raiziss Fellow with William DeGrado studying protein design. In 1999, he began his independent career at the University of Delaware as an assistant professor of Chemistry and Biochemistry and was promoted to associate and then full professor in 2009 with a secondary appointment in Materials Science and Engineering. He joined the NCI in 2010 as lab Chief of the newly established Chemical Biology Laboratory. He currently serves as Editor in Chief of Biopolymers-Peptide Science, the journal of the American Peptide Society.
Go to Joel's Page
 
 
 




Dr. Joel Schneider
Peptide Design and Materials
301-846-5954

Research Summary

The Schneider group designs and characterizes novel materials for use in tissue regenerative therapy, parenteral delivery of therapeutics, delivery of cells, and antibacterial therapy. We are particularly interested in peptide and protein-based hydrogel materials formed by self-assembly mechanisms. Our work spans molecular conception, materials synthesis, nano- and bulk mechanical materials characterization, cell-material interactions, biocompatibility, and assessment of performance efficacy. Our basic research establishes how material composition and structure influences material function, and lays the foundation to ultimately translate materials to the clinic.
PublicationsPatents
1 - 5 of 88 results
1)  Medina Scott H, Schneider Joel P.
Cancer cell surface induced peptide folding allows intracellular translocation of drug.
J+Control+Release. 209: 317-26, 2015. [Journal]
2)  Medina Scott H, Li Sandra, Howard O M Zack, Dunlap Micah, Trivett Anna, Schneider Joel P, Oppenheim Joost J.
Enhanced immunostimulatory effects of DNA-encapsulated peptide hydrogels.
Biomaterials. 53: 545-53, 2015. [Journal]
3)  Micklitsch C, Medina S, Yucel T, Nagy-Smith K, Pochan D, Schneider J.
Influence of hydrophobic face amino acids on the hydrogelation of β-hairpin peptide amphiphiles.
Macromolecules. 48: 1281-1288, 2015. [Journal]
4)  Sathaye S, Mbi A, Sonmez C, Chen Y, Blair DL, Schneider JP, Pochan DJ.
Rheology of peptide- and protein-based physical hydrogels: Are everyday measurements just scratching the surface?.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 7: 34-68, 2015. [Journal]
5)  Schneider JP.
Another year behind us.
Biopolymers. 102: vii, 2014. [Journal]
 
 
 
 
 
/////// 

Dr. Craig Thomas

Dr. Craig Thomas
 
Dr. Craig Thomas
Chemistry Technology

Craig Thomas received his BS from the University of Indianapolis in 1995 and received an MS degree and Ph.D. from Syracuse University in 2000. He then undertook a post-doctoral work in the laboratories of Dr. Sidney Hecht at the University of Virginia where he earned a fellowship through the American Cancer Society. From there, he moved the NIH where he directed the chemical biology core of the National Institute of Diabetes and Digestive and Kidney Diseases. In 2007, he moved to the NIH Chemical Genomics Center (currently the NIH Center for Advancing Translational Sciences) where he serves as the group leader of chemistry technologies.
Go to Craig's Page
 
 
Dr. Craig Thomas
Chemistry Technology
301-217-4079

Research Summary

For more information about Chemistry Technology at NCATS, please go to: http://www.ncats.nih.gov/research/reengineering/ncgc/chemtech/chem-tech.html
PublicationsPatents
1 - 5 of 104 results
1)  Jiang J, McCoy JG, Shen M, Leclair CA, Huang W, Negri A, Li J, Blue R, Harrington AW, Naini S, David G, Choi W, Volpi E, Fernandez J, Babayeva M, Nedelman MA, Filizola M, Coller BS, Thomas CJ.
A novel class of ion displacement ligands as antagonists of the aIIbß3 receptor that limit conformational reorganization of the receptor.
Bioorg. Med. Chem. Lett. 24: 1148-53, 2014. [Journal]
2)  Ceribelli M, Kelly PN, Shaffer AL, Wright GW, Xiao W, Yang Y, Mathews Griner LA, Guha R, Shinn P, Keller JM, Liu D, Patel PR, Ferrer M, Joshi S, Nerle S, Sandy P, Normant E, Thomas CJ, Staudt LM.
Blockade of oncogenic I?B kinase activity in diffuse large B-cell lymphoma by bromodomain and extraterminal domain protein inhibitors.
Proc. Natl. Acad. Sci. U.S.A. 111: 11365-70, 2014. [Journal]
3)  Vazquez-Ortiz G, Chisholm C, Xu X, Lahusen TJ, Li C, Sakamuru S, Huang R, Thomas CJ, Xia M, Deng C.
Drug repurposing screen identifies lestaurtinib amplifies the ability of the poly (ADP-ribose) polymerase 1 inhibitor AG14361 to kill breast cancer associated gene-1 mutant and wild type breast cancer cells.
Breast Cancer Res. 16: R67, 2014. [Journal]
4)  Thomas CJ, McKew JC.
Editorial: Playing Well with Others! Initiating and Sustaining Successful Collaborations between Industry, Academia and Government.
Curr Top Med Chem. 14: 291-3, 2014. [Journal]
5)  Shukla S, Chufan EE, Singh S, Skoumbourdis AP, Kapoor K, Boxer MB, Duveau DY, Thomas CJ, Talele TT, Ambudkar SV.
Elucidation of the structural basis of interaction of the BCR-ABL kinase inhibitor, nilotinib (Tasigna(®)) with the human ABC drug transporter P-glycoprotein.
Leukemia. 28: 961-4, 2014. [Journal]
 
 
 
 

1) Beutler JA, Chung S, Jiang JK, Legrice SF, Thomas CJ, Wilson JA (submitted in 2011) Tropolone Compounds For Treating Or Preventing Retroviral Infection.
Patent issued: 8,993,768 (US in 2015).
Patent pending: PCT/US2012/037208 (PC application).


2) FitzGerald D, Jiang JK, O'Shea JJ, Onda M, Pastan IH, Thomas CJ (submitted in 2010) Inhibition Of Antibody Responses To Foreign Proteins.
Patent pending: PCT/US2011/024382 (PC application).
Patent pending: PCT/US2011/024382 (PC application).
 
 
 
//////// 

Dr. Martin Schnermann

Dr. Martin Schnermann
 
 
 
Organic Synthesis

Dr. Schnermann attended Colby College and graduated in 2002 with degrees in Chemistry and Physics. At Colby, he worked with Prof. Dasan Thamattoor in the areas of physical organic chemistry and photochemistry. After a year at Pfizer Research and Development (Groton, CT) as an associate in the medicinal chemistry division, he moved to the Scripps Research Institute. During his graduate studies, he performed research on the total synthesis and biological evaluation of anticancer natural products with Prof. Dale Boger and obtained a Ph.D. in 2008. He then completed an NIH-postdoctoral fellowship with Prof. Larry Overman at the University of California, Irvine. At Irvine, he developed light-mediated reactions to enable the synthesis of complex natural products. In addition, working with Prof. Christine Suetterlin, he pursued chemical biology and imaging studies of organelle specific probes. In 2012, Dr. Schnermann joined the NCI where his research focuses on the synthesis and development of new small-molecule imaging agents for cancer treatment and diagnosis.
Go to Martin's Page
 
 
 

Research Summary

Near-IR Uncaging Chemistry: Discovery and Applications
Many key fundamental and applied questions in biology require unraveling issues relating to the spatial and temporal organization of multi-cellular systems. The combination of photocaged small molecule probes and the spatially controlled application of light could in principle provide key insights. However, existing photoremovable caging groups are often not suitable, particularly for organismal applications. This is due to the general requirement of UV or blue light, which suffers from associated toxicity and poor tissue penetration. By contrast, light between 650 and 900 nm, often referred to as the near-IR window, is cytocompatible and has significant tissue penetration (~centimeters). My group develops new single photon near-IR uncaging methods. This is a challenging chemistry problem because these wavelengths have only modest photonic energy. Our approach is been to define and then take advantage of photochemical reactions of long-wavelength fluorophores. In our most advanced project, we have shown that the photooxidative reactivity of heptamethine cyanines can be used for small molecule drug delivery. We have also shown that the photoredox ligand exchange of silicon phthalocyanines can be used for hypoxia-selective drug delivery. We use our methods towards two key unmet challenges in biology: (1) the development of a general theranostic approach for site-specific optical imaging and drug delivery and (2) the spatial and temporal regulation of gene expression to track and control cell fate.

Modern Synthetic Approaches for Small Molecule Imaging
There is a significant need for improved near-IR fluorophores for emerging applications in basic and applied biomedical science. Existing molecules are often prepared through inefficient classical synthetic methods that suffer from poor substrate scope and harsh reaction conditions. The limitations of existing methodologies dictate that researchers must choose from a small collection of probes whose chemical and physical properties are not ideal. We create reactions that enable the efficient preparation of novel near-IR fluorophores. We then use this chemistry to develop molecules with excellent chemical and photochemical stability and improved optical properties. These molecules are then applied towards several key cancer-related imaging applications. In related efforts, we are mining the structural diversity of natural products for light emitting scaffolds to develop broadly useful optical probes. Key to this work is the development of concise total syntheses to access compounds of interest.
PublicationsPatents
1 - 5 of 11 results
1)  Nani RR, Shaum JB, Gorka AP, Schnermann MJ.
Electrophile-integrating smiles rearrangement provides previously inaccessible c4"-o-alkyl heptamethine cyanine fluorophores.
Org. Lett. 17: 302-5, 2015. [Journal]
2)  Chan Susanna T S, Patel Paresma R, Ransom Tanya R, Henrich Curtis J, McKee Tawnya C, Goey Andrew K L, Cook Kristina M, Figg William D, McMahon James B, Schnermann Martin J, Gustafson Kirk R.
Structural Elucidation and Synthesis of Eudistidine A: An Unusual Polycyclic Marine Alkaloid that Blocks Interaction of the Protein Binding Domains of p300 and HIF-1α.
J.+Am.+Chem.+Soc. 137: 5569-75, 2015. [Journal]
3)  Gorka AP, Nani RR, Zhu J, Mackem S, Schnermann MJ.
A Near-IR Uncaging Strategy Based on Cyanine Photochemistry.
J. Am. Chem. Soc. 136: 14153-14159, 2014. Full Text Article. [Journal]
4)  Schnermann MJ, Shenvi RA.
Syntheses and biological studies of marine terpenoids derived from inorganic cyanide.
Nat Prod Rep. 2014. [Journal]
5)  Schnermann MJ, Overman LE.
A Concise Synthesis of (-)-Aplyviolene Facilitated by a Strategic Tertiary Radical Conjugate Addition.
Angew. Chem. Int. Ed. Engl. 2012. [Journal]




1) Schnermann MJ, Gorka AJ, Kobayashi HJ, Nani RJ (submitted in 2015) Near-ir Light-cleavable Conjugates And Conjugate Precursors.
Patent pending: 62/204,381 (US application).
Patent pending: 62/204,381 (US application).


2) Gustafson KR, Chan SR, Figg WR, McMahon JR, Patel PR, Schnermann MR (submitted in 2015) Hypoxia-inducible Factor 1 Hif-1 Inhibitors.
Patent pending: 62/144,182 (US application).
Patent pending: 62/144,182 (US application).
////////////


 

Friday, 10 June 2016

Jeffrey C. Gildersleeve





Jeffrey C. Gildersleeve, Ph.D.
Senior Investigator
Head, Chemical Glycobiology Section
The Gildersleeve group works at the interface of chemistry, glycobiology, and immunology. We use chemical approaches to 1) aid the design and development of cancer and HIV vaccines, 2) identify clinically useful biomarkers, and 3) better understand the roles of carbohydrates in cancer and HIV immunology. To facilitate these studies, we have developed a glycan microarray that allows high-throughput profiling of serum anti-glycan antibody populations.
Link to additional information about Dr. Gildersleeve’s research.
Areas of Expertise
1) glycan array technology, 2) cancer biomarkers, 3) cancer vaccines, 4) synthesis of carbohydrate antigens

Contact Info

Jeffrey C. Gildersleeve, Ph.D.
Center for Cancer Research
National Cancer Institute
Building 376, Room 208
Frederick, MD 21702-1201
Ph: 301-846-5699
gildersj@mail.nih.gov (link sends e-mail)
​ The Gildersleeve group works at the interface of chemistry, glycobiology, and immunology. We use chemical approaches to 1) aid the design and development of cancer and HIV vaccines, 2) identify clinically useful biomarkers, and 3) better understand the roles of carbohydrates in cancer and HIV immunology. To facilitate these studies, we have developed a glycan microarray that allows high-throughput profiling of serum anti-glycan antibody populations. A number of other groups have also developed glycan arrays; our array is unique in that we use multivalent neoglycoproteins as our array components. This format allows us to readily translate array results to other applications and affords novel approaches to vary glycan presentation.
The main focus of our current and future research is to study the roles of anti-glycan antibodies in the development, progression, and treatment of cancer. These projects are shedding new light on how cancer vaccines work and are uncovering new biomarkers for the early detection, diagnosis, and prognosis of cancer. In particular, we are studying immune responses induced by PROSTVAC-VF, a cancer vaccine in Phase III clinical trials for the treatment of advanced prostate cancer. In addition, we are identifying biomarkers for the early detection and prognosis of ovarian and lung cancer. These projects are highly collaborative in nature and are focused on translating basic research from the bench to the clinic. We rely heavily on glycan array technology to study immune responses to carbohydrates, and we continually strive to improve this technology. First, carbohydrate-protein interactions often involve formation of multivalent complexes. Therefore, presentation is a key feature of recognition. We have developed several new approaches to vary carbohydrate presentation on the surface of the array, including methods to vary glycan density and neoglycoprotein density. Second, we use synthetic organic chemistry to obtain a diverse set of tumor-associated carbohydrates and glycopeptides to populate our array.
Collaborations and Carbohydrate Microarray Screening. We are frequently asked to screen lectins, antibodies, and other entities on our array. Although we are not a core facility and do not provide screening services per se, we are happy to collaborate on many projects. Please contact Jeff Gildersleeve for more details.
Scientific Focus Areas:
Chemical Biology, Immunology
 
 
 
 
 Abstract Image
 
 
 

Antibodies are used extensively for a wide range of basic research and clinical applications. While an abundant and diverse collection of antibodies to protein antigens have been developed, good monoclonal antibodies to carbohydrates are much less common. Moreover, it can be difficult to determine if a particular antibody has the appropriate specificity, which antibody is best suited for a given application, and where to obtain that antibody. Herein, we provide an overview of the current state of the field, discuss challenges for selecting and using antiglycan antibodies, and summarize deficiencies in the existing repertoire of antiglycan antibodies. This perspective was enabled by collecting information from publications, databases, and commercial entities and assembling it into a single database, referred to as the Database of Anti-Glycan Reagents (DAGR). DAGR is a publicly available, comprehensive resource for anticarbohydrate antibodies, their applications, availability, and quality
Monoclonal antibodies have transformed biomedical research and clinical care. In basic research, these proteins are used widely for a myriad of applications, such as monitoring/detecting expression of biomolecules in tissue samples, activating or antagonizing various biological pathways, and purifying antigens. To illustrate the magnitude and importance of the antibody reagent market, one commercial supplier sells over 50 000 unique monoclonal antibody clones. In a clinical setting, antibodies are used frequently as therapeutic agents and for diagnostic applications. As a result, monoclonal antibodies are a multibillion dollar industry, with antibody therapeutics estimated at greater than $40 billion annually, diagnostics at roughly $8 billion annually, and antibody reagents at $2 billion annually as of 2012

Perspectives on Anti-Glycan Antibodies Gleaned from Development of a Community Resource Database

Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
ACS Chem. Biol., Article ASAP
DOI: 10.1021/acschembio.6b00244
Publication Date (Web): May 25, 2016
Copyright © 2016 American Chemical Society
ACS Editors’ Choice – This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
http://pubs.acs.org/doi/full/10.1021/acschembio.6b00244
 
 

Natalie Flanagan

Natalie Flanagan

Natalie Flanagan

Postbaccalaureate Fellow – Cancer Research Training Award (CRTA) at National Cancer Institute (NCI)
https://www.linkedin.com/in/natalie-flanagan-602a98109
https://www.facebook.com/natalie.flanagan.3386/about






Experience


Organic Chemistry Lab TA

University of Maryland
(9 months)College Park, Maryland
– Ran on section of the Organic Chemistry I laboratory course for two semesters
– Worked with students in a laboratory setting and office hours to help them understand course materials and experimental procedures
– Worked with professors and other TAs to help develop and grade examinations

Summer Intern

Pfizer
(3 months)Groton, Connecticut
– Used protein crystallization to research ligand binding in a protein kinase system
– Learned a variety of laboratory techniques, including: expression and purification of proteins, and various protein crystallization techniques
– Gained a basic knowledge for how to interpret electron density maps used in three-dimensional protein structure determination
– Presented my research project at an internal poster presentation

Education


Ledyard High School

High School, General Studies



Abstract Image
Antibodies are used extensively for a wide range of basic research and clinical applications. While an abundant and diverse collection of antibodies to protein antigens have been developed, good monoclonal antibodies to carbohydrates are much less common. Moreover, it can be difficult to determine if a particular antibody has the appropriate specificity, which antibody is best suited for a given application, and where to obtain that antibody. Herein, we provide an overview of the current state of the field, discuss challenges for selecting and using antiglycan antibodies, and summarize deficiencies in the existing repertoire of antiglycan antibodies. This perspective was enabled by collecting information from publications, databases, and commercial entities and assembling it into a single database, referred to as the Database of Anti-Glycan Reagents (DAGR). DAGR is a publicly available, comprehensive resource for anticarbohydrate antibodies, their applications, availability, and quality
Monoclonal antibodies have transformed biomedical research and clinical care. In basic research, these proteins are used widely for a myriad of applications, such as monitoring/detecting expression of biomolecules in tissue samples, activating or antagonizing various biological pathways, and purifying antigens. To illustrate the magnitude and importance of the antibody reagent market, one commercial supplier sells over 50 000 unique monoclonal antibody clones. In a clinical setting, antibodies are used frequently as therapeutic agents and for diagnostic applications. As a result, monoclonal antibodies are a multibillion dollar industry, with antibody therapeutics estimated at greater than $40 billion annually, diagnostics at roughly $8 billion annually, and antibody reagents at $2 billion annually as of 2012

Perspectives on Anti-Glycan Antibodies Gleaned from Development of a Community Resource Database

Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
ACS Chem. Biol., Article ASAP
DOI: 10.1021/acschembio.6b00244
Publication Date (Web): May 25, 2016
Copyright © 2016 American Chemical Society
ACS Editors’ Choice – This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
http://pubs.acs.org/doi/full/10.1021/acschembio.6b00244


MAXY

Rest in peace baby. I hope puppy heaven is filled with treats and marrow bones. I'll miss you Maxy.









Thursday, 9 June 2016

Praveen K Chinthakindi

Praveen Kumar
Praveen Kumar

PhD
PostDoc Position

Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, 4041, South Africa
 
+919796273235
praveen_chinthakindi@yahoo.com

Research experience

  • May 2014–present
    PostDoc Position
    University of KwaZulu-Natal · School of Pharmacy and Pharmacology · Catalysis and Peptide Research Unit
    South Africa · Durabn
  • Jan 2009–Jan 2014
    SRF
    Indian Institute of Integrative Medicine · Bio-Organic Chemistry Division (IIIM) · Dr. S. Koul
    India · Jammu
/////////////